3.155 \(\int \frac {A+B \cos (c+d x)}{\sqrt {\cos (c+d x)} (a+a \cos (c+d x))^2} \, dx\)

Optimal. Leaf size=121 \[ \frac {(2 A+B) F\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{3 a^2 d}+\frac {A E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{a^2 d}-\frac {A \sin (c+d x) \sqrt {\cos (c+d x)}}{a^2 d (\cos (c+d x)+1)}-\frac {(A-B) \sin (c+d x) \sqrt {\cos (c+d x)}}{3 d (a \cos (c+d x)+a)^2} \]

[Out]

A*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))/a^2/d+1/3*(2*A+B)*(cos
(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticF(sin(1/2*d*x+1/2*c),2^(1/2))/a^2/d-A*sin(d*x+c)*cos(d*x+c
)^(1/2)/a^2/d/(1+cos(d*x+c))-1/3*(A-B)*sin(d*x+c)*cos(d*x+c)^(1/2)/d/(a+a*cos(d*x+c))^2

________________________________________________________________________________________

Rubi [A]  time = 0.34, antiderivative size = 121, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 4, integrand size = 33, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.121, Rules used = {2978, 2748, 2641, 2639} \[ \frac {(2 A+B) F\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{3 a^2 d}+\frac {A E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{a^2 d}-\frac {A \sin (c+d x) \sqrt {\cos (c+d x)}}{a^2 d (\cos (c+d x)+1)}-\frac {(A-B) \sin (c+d x) \sqrt {\cos (c+d x)}}{3 d (a \cos (c+d x)+a)^2} \]

Antiderivative was successfully verified.

[In]

Int[(A + B*Cos[c + d*x])/(Sqrt[Cos[c + d*x]]*(a + a*Cos[c + d*x])^2),x]

[Out]

(A*EllipticE[(c + d*x)/2, 2])/(a^2*d) + ((2*A + B)*EllipticF[(c + d*x)/2, 2])/(3*a^2*d) - (A*Sqrt[Cos[c + d*x]
]*Sin[c + d*x])/(a^2*d*(1 + Cos[c + d*x])) - ((A - B)*Sqrt[Cos[c + d*x]]*Sin[c + d*x])/(3*d*(a + a*Cos[c + d*x
])^2)

Rule 2639

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticE[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ[{
c, d}, x]

Rule 2641

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticF[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ
[{c, d}, x]

Rule 2748

Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[c, Int[(b*S
in[e + f*x])^m, x], x] + Dist[d/b, Int[(b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{b, c, d, e, f, m}, x]

Rule 2978

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(b*(A*b - a*B)*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*(c + d*Sin[e + f*
x])^(n + 1))/(a*f*(2*m + 1)*(b*c - a*d)), x] + Dist[1/(a*(2*m + 1)*(b*c - a*d)), Int[(a + b*Sin[e + f*x])^(m +
 1)*(c + d*Sin[e + f*x])^n*Simp[B*(a*c*m + b*d*(n + 1)) + A*(b*c*(m + 1) - a*d*(2*m + n + 2)) + d*(A*b - a*B)*
(m + n + 2)*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2
- b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[m, -2^(-1)] &&  !GtQ[n, 0] && IntegerQ[2*m] && (IntegerQ[2*n] || EqQ[c,
0])

Rubi steps

\begin {align*} \int \frac {A+B \cos (c+d x)}{\sqrt {\cos (c+d x)} (a+a \cos (c+d x))^2} \, dx &=-\frac {(A-B) \sqrt {\cos (c+d x)} \sin (c+d x)}{3 d (a+a \cos (c+d x))^2}+\frac {\int \frac {\frac {1}{2} a (5 A+B)-\frac {1}{2} a (A-B) \cos (c+d x)}{\sqrt {\cos (c+d x)} (a+a \cos (c+d x))} \, dx}{3 a^2}\\ &=-\frac {A \sqrt {\cos (c+d x)} \sin (c+d x)}{a^2 d (1+\cos (c+d x))}-\frac {(A-B) \sqrt {\cos (c+d x)} \sin (c+d x)}{3 d (a+a \cos (c+d x))^2}+\frac {\int \frac {\frac {1}{2} a^2 (2 A+B)+\frac {3}{2} a^2 A \cos (c+d x)}{\sqrt {\cos (c+d x)}} \, dx}{3 a^4}\\ &=-\frac {A \sqrt {\cos (c+d x)} \sin (c+d x)}{a^2 d (1+\cos (c+d x))}-\frac {(A-B) \sqrt {\cos (c+d x)} \sin (c+d x)}{3 d (a+a \cos (c+d x))^2}+\frac {A \int \sqrt {\cos (c+d x)} \, dx}{2 a^2}+\frac {(2 A+B) \int \frac {1}{\sqrt {\cos (c+d x)}} \, dx}{6 a^2}\\ &=\frac {A E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{a^2 d}+\frac {(2 A+B) F\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{3 a^2 d}-\frac {A \sqrt {\cos (c+d x)} \sin (c+d x)}{a^2 d (1+\cos (c+d x))}-\frac {(A-B) \sqrt {\cos (c+d x)} \sin (c+d x)}{3 d (a+a \cos (c+d x))^2}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 6.55, size = 815, normalized size = 6.74 \[ \frac {i A \csc \left (\frac {c}{2}\right ) \sec \left (\frac {c}{2}\right ) \left (\frac {2 e^{2 i d x} \, _2F_1\left (\frac {1}{2},\frac {3}{4};\frac {7}{4};-e^{2 i d x} (\cos (c)+i \sin (c))^2\right ) \sqrt {e^{-i d x} \left (2 \left (1+e^{2 i d x}\right ) \cos (c)+2 i \left (-1+e^{2 i d x}\right ) \sin (c)\right )} \sqrt {e^{2 i d x} \cos (2 c)+i e^{2 i d x} \sin (2 c)+1}}{3 i d \left (1+e^{2 i d x}\right ) \cos (c)-3 d \left (-1+e^{2 i d x}\right ) \sin (c)}-\frac {2 \, _2F_1\left (-\frac {1}{4},\frac {1}{2};\frac {3}{4};-e^{2 i d x} (\cos (c)+i \sin (c))^2\right ) \sqrt {e^{-i d x} \left (2 \left (1+e^{2 i d x}\right ) \cos (c)+2 i \left (-1+e^{2 i d x}\right ) \sin (c)\right )} \sqrt {e^{2 i d x} \cos (2 c)+i e^{2 i d x} \sin (2 c)+1}}{d \left (-1+e^{2 i d x}\right ) \sin (c)-i d \left (1+e^{2 i d x}\right ) \cos (c)}\right ) \cos ^4\left (\frac {c}{2}+\frac {d x}{2}\right )}{2 (\cos (c+d x) a+a)^2}+\frac {\sqrt {\cos (c+d x)} \left (-\frac {2 \sec \left (\frac {c}{2}\right ) \left (A \sin \left (\frac {d x}{2}\right )-B \sin \left (\frac {d x}{2}\right )\right ) \sec ^3\left (\frac {c}{2}+\frac {d x}{2}\right )}{3 d}-\frac {2 (A-B) \tan \left (\frac {c}{2}\right ) \sec ^2\left (\frac {c}{2}+\frac {d x}{2}\right )}{3 d}-\frac {4 A \sec \left (\frac {c}{2}\right ) \sin \left (\frac {d x}{2}\right ) \sec \left (\frac {c}{2}+\frac {d x}{2}\right )}{d}-\frac {4 A \csc (c)}{d}\right ) \cos ^4\left (\frac {c}{2}+\frac {d x}{2}\right )}{(\cos (c+d x) a+a)^2}-\frac {4 A \csc \left (\frac {c}{2}\right ) \, _2F_1\left (\frac {1}{4},\frac {1}{2};\frac {5}{4};\sin ^2\left (d x-\tan ^{-1}(\cot (c))\right )\right ) \sec \left (\frac {c}{2}\right ) \sec \left (d x-\tan ^{-1}(\cot (c))\right ) \sqrt {1-\sin \left (d x-\tan ^{-1}(\cot (c))\right )} \sqrt {-\sqrt {\cot ^2(c)+1} \sin (c) \sin \left (d x-\tan ^{-1}(\cot (c))\right )} \sqrt {\sin \left (d x-\tan ^{-1}(\cot (c))\right )+1} \cos ^4\left (\frac {c}{2}+\frac {d x}{2}\right )}{3 d (\cos (c+d x) a+a)^2 \sqrt {\cot ^2(c)+1}}-\frac {2 B \csc \left (\frac {c}{2}\right ) \, _2F_1\left (\frac {1}{4},\frac {1}{2};\frac {5}{4};\sin ^2\left (d x-\tan ^{-1}(\cot (c))\right )\right ) \sec \left (\frac {c}{2}\right ) \sec \left (d x-\tan ^{-1}(\cot (c))\right ) \sqrt {1-\sin \left (d x-\tan ^{-1}(\cot (c))\right )} \sqrt {-\sqrt {\cot ^2(c)+1} \sin (c) \sin \left (d x-\tan ^{-1}(\cot (c))\right )} \sqrt {\sin \left (d x-\tan ^{-1}(\cot (c))\right )+1} \cos ^4\left (\frac {c}{2}+\frac {d x}{2}\right )}{3 d (\cos (c+d x) a+a)^2 \sqrt {\cot ^2(c)+1}} \]

Antiderivative was successfully verified.

[In]

Integrate[(A + B*Cos[c + d*x])/(Sqrt[Cos[c + d*x]]*(a + a*Cos[c + d*x])^2),x]

[Out]

((I/2)*A*Cos[c/2 + (d*x)/2]^4*Csc[c/2]*Sec[c/2]*((2*E^((2*I)*d*x)*Hypergeometric2F1[1/2, 3/4, 7/4, -(E^((2*I)*
d*x)*(Cos[c] + I*Sin[c])^2)]*Sqrt[(2*(1 + E^((2*I)*d*x))*Cos[c] + (2*I)*(-1 + E^((2*I)*d*x))*Sin[c])/E^(I*d*x)
]*Sqrt[1 + E^((2*I)*d*x)*Cos[2*c] + I*E^((2*I)*d*x)*Sin[2*c]])/((3*I)*d*(1 + E^((2*I)*d*x))*Cos[c] - 3*d*(-1 +
 E^((2*I)*d*x))*Sin[c]) - (2*Hypergeometric2F1[-1/4, 1/2, 3/4, -(E^((2*I)*d*x)*(Cos[c] + I*Sin[c])^2)]*Sqrt[(2
*(1 + E^((2*I)*d*x))*Cos[c] + (2*I)*(-1 + E^((2*I)*d*x))*Sin[c])/E^(I*d*x)]*Sqrt[1 + E^((2*I)*d*x)*Cos[2*c] +
I*E^((2*I)*d*x)*Sin[2*c]])/((-I)*d*(1 + E^((2*I)*d*x))*Cos[c] + d*(-1 + E^((2*I)*d*x))*Sin[c])))/(a + a*Cos[c
+ d*x])^2 - (4*A*Cos[c/2 + (d*x)/2]^4*Csc[c/2]*HypergeometricPFQ[{1/4, 1/2}, {5/4}, Sin[d*x - ArcTan[Cot[c]]]^
2]*Sec[c/2]*Sec[d*x - ArcTan[Cot[c]]]*Sqrt[1 - Sin[d*x - ArcTan[Cot[c]]]]*Sqrt[-(Sqrt[1 + Cot[c]^2]*Sin[c]*Sin
[d*x - ArcTan[Cot[c]]])]*Sqrt[1 + Sin[d*x - ArcTan[Cot[c]]]])/(3*d*(a + a*Cos[c + d*x])^2*Sqrt[1 + Cot[c]^2])
- (2*B*Cos[c/2 + (d*x)/2]^4*Csc[c/2]*HypergeometricPFQ[{1/4, 1/2}, {5/4}, Sin[d*x - ArcTan[Cot[c]]]^2]*Sec[c/2
]*Sec[d*x - ArcTan[Cot[c]]]*Sqrt[1 - Sin[d*x - ArcTan[Cot[c]]]]*Sqrt[-(Sqrt[1 + Cot[c]^2]*Sin[c]*Sin[d*x - Arc
Tan[Cot[c]]])]*Sqrt[1 + Sin[d*x - ArcTan[Cot[c]]]])/(3*d*(a + a*Cos[c + d*x])^2*Sqrt[1 + Cot[c]^2]) + (Cos[c/2
 + (d*x)/2]^4*Sqrt[Cos[c + d*x]]*((-4*A*Csc[c])/d - (4*A*Sec[c/2]*Sec[c/2 + (d*x)/2]*Sin[(d*x)/2])/d - (2*Sec[
c/2]*Sec[c/2 + (d*x)/2]^3*(A*Sin[(d*x)/2] - B*Sin[(d*x)/2]))/(3*d) - (2*(A - B)*Sec[c/2 + (d*x)/2]^2*Tan[c/2])
/(3*d)))/(a + a*Cos[c + d*x])^2

________________________________________________________________________________________

fricas [F]  time = 0.85, size = 0, normalized size = 0.00 \[ {\rm integral}\left (\frac {{\left (B \cos \left (d x + c\right ) + A\right )} \sqrt {\cos \left (d x + c\right )}}{a^{2} \cos \left (d x + c\right )^{3} + 2 \, a^{2} \cos \left (d x + c\right )^{2} + a^{2} \cos \left (d x + c\right )}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*cos(d*x+c))/(a+a*cos(d*x+c))^2/cos(d*x+c)^(1/2),x, algorithm="fricas")

[Out]

integral((B*cos(d*x + c) + A)*sqrt(cos(d*x + c))/(a^2*cos(d*x + c)^3 + 2*a^2*cos(d*x + c)^2 + a^2*cos(d*x + c)
), x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {B \cos \left (d x + c\right ) + A}{{\left (a \cos \left (d x + c\right ) + a\right )}^{2} \sqrt {\cos \left (d x + c\right )}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*cos(d*x+c))/(a+a*cos(d*x+c))^2/cos(d*x+c)^(1/2),x, algorithm="giac")

[Out]

integrate((B*cos(d*x + c) + A)/((a*cos(d*x + c) + a)^2*sqrt(cos(d*x + c))), x)

________________________________________________________________________________________

maple [B]  time = 1.10, size = 350, normalized size = 2.89 \[ \frac {\sqrt {\left (2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1\right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \left (12 A \left (\cos ^{6}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-4 A \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+1}\, \EllipticF \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \left (\cos ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+6 A \left (\cos ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+1}\, \EllipticE \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-2 B \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+1}\, \EllipticF \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \left (\cos ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-16 A \left (\cos ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-2 B \left (\cos ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+3 A \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+3 B \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+A -B \right )}{6 a^{2} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{3} \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((A+B*cos(d*x+c))/(a+a*cos(d*x+c))^2/cos(d*x+c)^(1/2),x)

[Out]

1/6*((2*cos(1/2*d*x+1/2*c)^2-1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(12*A*cos(1/2*d*x+1/2*c)^6-4*A*(sin(1/2*d*x+1/2*c)
^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))*cos(1/2*d*x+1/2*c)^3+6*A*cos
(1/2*d*x+1/2*c)^3*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),
2^(1/2))-2*B*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/
2))*cos(1/2*d*x+1/2*c)^3-16*A*cos(1/2*d*x+1/2*c)^4-2*B*cos(1/2*d*x+1/2*c)^4+3*A*cos(1/2*d*x+1/2*c)^2+3*B*cos(1
/2*d*x+1/2*c)^2+A-B)/a^2/cos(1/2*d*x+1/2*c)^3/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/sin(1/2*d*x
+1/2*c)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {B \cos \left (d x + c\right ) + A}{{\left (a \cos \left (d x + c\right ) + a\right )}^{2} \sqrt {\cos \left (d x + c\right )}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*cos(d*x+c))/(a+a*cos(d*x+c))^2/cos(d*x+c)^(1/2),x, algorithm="maxima")

[Out]

integrate((B*cos(d*x + c) + A)/((a*cos(d*x + c) + a)^2*sqrt(cos(d*x + c))), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {A+B\,\cos \left (c+d\,x\right )}{\sqrt {\cos \left (c+d\,x\right )}\,{\left (a+a\,\cos \left (c+d\,x\right )\right )}^2} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((A + B*cos(c + d*x))/(cos(c + d*x)^(1/2)*(a + a*cos(c + d*x))^2),x)

[Out]

int((A + B*cos(c + d*x))/(cos(c + d*x)^(1/2)*(a + a*cos(c + d*x))^2), x)

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*cos(d*x+c))/(a+a*cos(d*x+c))**2/cos(d*x+c)**(1/2),x)

[Out]

Timed out

________________________________________________________________________________________